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Motion of atoms along a close-packed row of atoms in a crystal is described. Each atom has

a sinusoidal interaction with atoms not in the row.

nearest neighbors in the row.

It also interacts by Hooke’s law with its

For wavelike solutions, the displacements of the nearest neigh-

bors are expanded in terms of time derivatives of the displacement of the atom in question.
If this expansion converges, then solutions are obtained in both the classical and the quantum

cases.

In the classical case, seven different types of solutions are found. In the classical

case, the conditions such that the atoms move over the potential barrier are carefully investi-
gated. Conditions are given under which two waves give motion over the barrier when neither

would separately.
vergence does occur for reasonable potentials.

I. INTRODUCTION

There is a very great need for investigations both
by theory and experiment of lattice motions which
are large and hence anharmonic. In this paper we
discuss the propagation of lattice waves along a line
of atoms in a crystal. The motion will not be lim-
ited to small amplitude; in fact, the conditions un-
der which atoms can move over the potential bar-
riers which limit them to vibration in a given valley
will be carefully examined.

II. FRENKEL-KONTOROVA MODEL

Consider a monatomic crystal composed of mass
points m between which there are forces of inter-
action. Let us focus our attention on a line of atoms

Similar considerations are given for combinations of three waves.

Con-~

lying along some prominent crystallographic direc-
tion. The motions which will be described are un-
doubtedly of most importance for directions having
closely spaced atoms and having neighboring rows
which are not too near the line. The (110) direc-
tions in the fcc lattice represent such a case. Let
the potential for motion along the line, i.e., along
x, be composed of two parts. First an interaction
of the jth atom on the line with the atoms of the lat-
tice not on the line. This we write

V. =3Vo[1-cos(2mx;/a)], (1)

where V, is the amplitude of the off-axis potential,
x; is the displacement of the jth atom from equilib-
rium in a direction along the line and a is the per-
iod of this off-axis potential. There is also an in-
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teraction with atoms on the line of atoms. We as-
sume that atoms on the line of atoms interact har-
monically with their nearest neighbors on the line
unless their nearest neighbor is at a distance great-
er than 3a. If the separation is greater than a we
assume zero interaction. Inaddition, we neglect the
interaction between next-nearest neighbors. This
model was first used by Frenkel and Kontorova'
for discussing slip waves (i.e., waves in which the
atoms move from one equilibrium position to the
next along the line).

The Hamiltonian for the system is

4.0 2
H=T+V=1 [g—; +3B8(x;.q = 28) +3B(x; — %;4)?
AL

+—‘-2/-Q (1 - cos gz_x‘,)] . (2)

III. CLASSICAL TREATMENT

From Eq. (2) one obtains the following equation
of motion for the jth particle:

. Vo s
%ZEL:B(X\,‘_I”ZQCJ‘F?CJ*I)—%Q Smiaxj' . (3)
Solutions in the form of running waves can be found
by setting

w,(t+08)=2x;4(8) , x;(6=8)=1x;,,() . (4)

In Eq. (4) if 6 is positive we are considering a wave
moving towards increasing values of j. If 6 is neg-
ative the wave is traveling towards decreasing j.

If Egs. (4) are inserted into the equation of motion
(3) and if x;_,(¢) and x;,,(¢) are expressed in terms
of x;(#) and time derivatives of x;(¢) one finds that

dix 7Vy . 2mx; B6* d*x;
- 852 =0 anxg BP9
(m = o) G == ST g A

8
BG d°x~ ... (5)

If the displacement x;(¢) does not vary too rapidly
with time one can neglect the higher derivatives.
Then we have

d’x; _ wVy . 2mx;  po* dty, 6
agp g ST Sy g 0, (@)

where the effective mass o is
a=m - po%. (7

To integrate (6) multiply both sides by x; (dots
represent time derivatives) and integrate. One ob-
tains

ali, =2V, - st Z5) hast(iy - 15D, (@)
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where 7 is a constant of integration. x; and x; are,
of course, real numbers. Therefore, from (8) the
following kinds of solution can occur (where we
have neglected the 5 term):

Type Value of a Value of #?
A a=0 0<ni<+1
B a>0 0<n?<+1
C a>0 +l<pd<soo
D a<0 0<n?<+1
E a<0 nt=0
F a<0 -1<n?<0
G a<0 —o<pfc—1

It is helpful to define
bo=(m/p)"% . (9)

Here §, is the time required for a longitudinal

sound wave to traverse one atomic distance along
the line of atoms when the line of atoms is uncoupled
from the rest of the lattice, i.e., when V;is 0.

If ¢ isthe velocity of longitudinal sound waves along
the uncoupled line of atoms, we have

c=a/s,=alg/m)'? . (10)
Let us consider various types of motion.

A. Effective Mass Zero, Type A(a=0)

In this case one must integrate Eq. (5) with the
term on the left-hand side of the equation set equal
to zero. If the sixth derivative can be neglected
we must integrate:

4y 21 x;
dx41=12ﬂzVO§‘ in 27%
dt ma a

(11)

We have only suceeded in integrating this once. One
finds

dat df ~2\att) "~ m?

3 2, \2
dy dxy ——1—<—ng x> = ———O—invﬁ cos—izzx +Ky. (12)

B. Effective Mass Positive, Small Oscillations
(@>0,0<n%<1)

The following procedure will be adopted for all
types of solutions: In Eq. (8) the terms in 6* will
be neglected at first and a solution of the resulting
approximate equation will be obtained. Using this
solution the 6* terms will then be treated as a per-
turbation.

In Eq. (8) with the 6* term omitted ¥, is zero
when sin(rx;/a)=n<1. Thus x; <za so each atom
in the line executes small oscillations about a given
minimum. The velocity |x;| decreases as x; in-
creases from zero to its limiting value. We intro-
duce the new variables

z=sin(ry,/a), zy=n. (13)

The integral resulting from the approximate equa-
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tion (8) is

y
dz T %1/2
'/o. - Z A, ( p ) t. (14)

Since this is a standard elliptic integral? one finds

172
y=sinﬂ—;-ﬂ=nsn§<27vq) ¢, (15)

where sn is the elliptic function analogous to the
sine. It is enough to treat the motion of the atom
having j=0 since the motion of all other atoms on
the line is then given using Eqs. (4). The maxi-
mum amplitude xj is

Zn=sin(ra/a)=n . (16)

The total energy of the system is a first integral
of the equations of motion. From (2) and (4) the
total energy E is

E=2,{bms2 + 584262 + 643 x, %, +1%2) + 06°]
+3Vy[1 - cos(2rx;/a)]}, @)

where the dots represent time derivatives. Note
that only even powers of 5 appear and that we have
omitted terms in 58 The total energy can be writ-
ten in terms of n, 5, 8, and x; by using (4), (8),
and (9) in Eq. (17). We find
2, 52 2
E= N2V, 8 2V 5 g2 T4 (18)
50 -0 50 -0 i a

where N is the number of atoms in the chain and

where 5* terms have been neglected.
Using the definitions for § and §, Eq. (7) is

a=m(53 - 5%)/52 . (19)

Since in case B one has a>0, Eq. (19) shows that
6 < 8, so the phase velocity is greater than the ve-
locity of sound in the uncoupled chain of atoms.

The dispersion relation can be obtained as fol-
lows: The period of oscillation T of the zeroth atom
is four times the time required to go from zero
displacement to the maximum displacement. So
we have

1 T=4_a(ﬁ_>1/2f‘m dz
) 7 \2Vy/ [1 =252 - 22)®

_da (o \?
-& <2V0) K@), (20)

where K(n) is the complete elliptic integral of the
first kind.® Using (4) and (15) the displacement of
the jth atom is therefore

sin(rx;/a)=nsn[(1/a)2Vy/a)*/2(t-j8)] , (21)

which can also be written

KOEHLER 4

sin(rx;/a) =n sn[4vK(n) (¢ - j5)] . (22)
The phase velocity of the waves is
v=a/6=vr=2mv/q, (23)

where ¢=2m/) is the wave number. From (20) we
obtain

_gqa__7 (%)"2
216 4aK@n) \ o

14

_ - ZVO )1/2
" 4aK(n) (m -B(ga/2mv)?)

Solving for »? one finds
V2 =12Vy/8ma®K?(n) + (qa/2m5,) . (24)

Because 5% terms were neglected, this dispersion
relation does not contain terms in ¢*. The con-
stant term is associated with g=0 (A=) when all
atoms of the chain move together. As » increases
the amplitude of oscillation increases but the first
term in (24) decreases since®

K(n)=3m[1+ 2(3n%) + 9(51%)* +50(n®)° + - -+ ] .

(25)
When gq is zero, v? approaches Vy/8mn®d® as n
approaches zero. We call this limit »3.
Let us treat the 6* term in Eq. (8). I we sub-
stitute from Eqgs. (6) and (8) into the 5* term we
obtain

ax=n’ [2 Vo- 20t (’—’—I—’ﬂﬂ

3 aa
4 2
- sin? ™% [zvo _Be (ﬂ) (an + 1ﬂ
a 3 aa

2
- Bé‘(—”—&) sint™® .
aa a

If we define a dimensionless variable % where
h=(B6*/3V,) (nVy/aal?, (26)

then the above equation is
x2=(2Vy/ a){n*(1 - h) - sin®(nx/a)

x [1-4(4n? + Vi) - 3nsin*rx/a)},  (27)

where % is a small quantity compared with unity.

I V,=1eV, 8=10° dyn/cm, and a=2.86 A, then
7=0.06528, where we took a=3m. Note that m
cancels out in z. Thus the first effect of the 5*
terms is to alter slightly the values of nz, the am-
plitude, and of v, the frequency associated with the
motion. The sin(rx/a) term must however be con-
sidered further.
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Actually Eq. (27) can be written as
-2 [ (- )= [1 - (4n?+ 1)} sin® 2
—%hsmﬂ-’f(nz—i af)] ,
which gives
dx{1 - 3 sin®(nx/a)]

121 =n) - [1 - (P +1)5n] sin®(nx/a)} 2

—dt(zv>”2 . (29

This integrates, giving

h
sn"Y(sing, &) - T 2

Tt /2
et ol GO PR RS %) MCY)

~ where
K =n*(1=n)/[1 - ®+1)3h], (30)
sin¢ = sin(rx/a)/k , (31)

and where sn"(¢, k) is an elliptic integral of the
first kind, and E(¢, k) is an elliptic integral of the
second kind.* The lowest order of approximation
gives

sm’;—x=ksn[a(1”t4h) <2V [1- (2 1)2h])1 ZJ .

(32)
But E(¢, &) is
E(¢k)=3(1 +n?)sing +3(1 - n?)
x In[(1 + sing)/cosp ]+ . (33)
Thus, if we take only the first term to use in Eq.

(29) and carry out the inversion we find that

2
sinﬂ <1—%h- __(n +1) ¢

osﬂ (1 +4e- "5 ®) /K(k))>
k a

_ Tt (2Vy/a)[1 = (0P +1)3h]
-ksn( 230 ) ,  (34)

where K(k) is the complete elliptic integral of the
first kind and where k'2=1 - %%, Note that Eq. (34)
is correct to first order in %; terms in #? were
neglected.

C. Continuous Motion over Barriers (¢ >0, 1 < n?< )

In this case if the 5* terms are omitted in Eq.
(8) one sees that x2 is greater than zero, no matter

what x is. Hence, in one type of such a motion the
particles move continuously in the plus-x direction.
We obtain the solution by integrating Eq. (28). Let
us at first omit terms in 2. We take

K =1/n (35)
and on integrating and inverting one obtains
1/2
sinM=sn|:Zm—t(%> ] . (36)
a a \a

We can still use Eq. (18) for the energy of the sys-
tem. This dispersion relation is found as before,

1— _ég_ o 172 /2 dé )
;"T_ﬂ<ﬁ’;> _[ (n® - sin®¢)t/2 ? (87)

1 pfa(a V20 _1_>
v 1 2V, nf \n)’

_ga ___m___(2V\/? ;
V=ors ~ 4ak(1/n) <oz ) (38)

™ 2V, >”2
" 4aK(1/n) (m B(qa/Zmz) )

Solving for »? one finds

02V, qa

v 8ma®K*(1/n) (21r5> (39)

where terms q have been neglected. When » ap-
proaches unity K(1/xn) approaches infinity giving a
zero first term in (39). When # approaches infinity
K(1/n) approaches 37 and the first term goes to in-
finity.

D. Small Oscillations near Top of Barrier (<0, 0<n2<+1)

In this case, in (8) one achieves imaginary quan-
tities on both sides if sin®(7xy/a) >n®. After inte-
gration inversion and rearrangement one obtains:

sm—a —n{l (1 = #)sn [Zt (%)1/2:'}-1/2

- n{na +(1 - n?)en? [’—'af (%)1/2]}'1/2 ,  (40)

where cn is the elliptic function analogous to the
cosine. Thus sin(rx/a) is unity when sn is unity
and is » when sn is zero. The dispersion relation
is obtained in the usual way, i.e.,

1&(@)‘ /’2 do
v m \2V, sln_lm(sin2¢—nz)IJE
=(4¢l/11)(lozl/2Vo)”2

X [K((1 -=#n®)'2) - F(sin"'(n), (1 —n®)'?)],
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where F(sin"!(r), %) is the incomplete elliptic inte-
gral of the first kind. Solving for »?, we have

a2 - 7%V,
V= 8ma?[K((1 = D)%) = F(sin(n), (1 - ) R)JP

+<§q7:;_0>2 [K((L - n2)/2 - F(sin(n), (1 -n2)1/2)] ,

(41)

This shows that in the present case there is a
limiting wave number ¢.. Only larger wave num-

bers give positive values of »2.

E. Transient Motion near Top of Barrier (a <0, n?=0)

J. S. KOEHLER 4
x_ mt (2V, )2
tanza—Aexp[+a (Ial) , (42)

where the constant A gives the initial value of x.
Note that

x=sin(rx/a) (2Vy/ | a|)M/2,

so the velocity reaches a maximum at the top of the
barrier, i.e., at 3a. If A=1 the atom in question
starts at 3a with maximum velocity and ends at in-
finite time at x=a with zero velocity.

F. Small Oscillations near Bottom (a <0, -1<n? <0)

The equation for integration in this case is

1/2
This is a special case associated with a particular T (?T/ ;() d’; S (_Z_Ko.) ,
energy of the system. The integration is elemen- [17*] + sin2(mx/a)] a \leal
tary and one finds which integrates to give
|
1/2 1/2]) -1/2
sin™ = |n| sn ”—t<—2—Y-°-(1+|n2|) 1+|n?| cn? 1r_t(2_VQ_(1+|na|) z] . (43)
a a \lal a\lal

Thus sin(rx/a) varies between +Iz!| and —[z| as
time increases. The dispersion relation is

2 -1Vl +1%21) (qa )2.(44)

T 8maF(sinIn [, 1+ )'1/2)+ 218,
|

Again there is a critical ¢ and only larger wave
numbers give physically meaningful solutions.

G. Motion over Barriers (a <0, —o<n? <-1)

On integration and inversion one obtains

. t (2V, e N
smz_x=|n|sn[%(_l—&%(l+|nz|)> ]{|n2|+cnz[";t<2l_;’n[_(1+|n2|)> 2]} ' 4

Hence in case G the atoms go over the barriers
since from (8) the velocity never goes to zero. The
dispersion relation is

___ V(1 +1n%) ga\
vi==- 8mang((1 + 172 1)17%) +<2"5o) ’ 40

Again only large wave numbers are physically al-
lowed.

IV. TOTAL ENERGY

To evaluate the partition function so that the
thermal behavior of the model can be studied, it is
necessary to find E and v for all the normal modes
of the system.

Case B. Small Oscillations (@>0, 0<n®<+1).
Since we are especially interested in cases in
which the particles are near the tops of the bar-
riers we attempt to use expressions appropriate
for that limit. From Eqs. (18) and (22) one finds

161°ma?K%(n) ( qa \2
=Nn?
EB n V0+ 1T2 <21160>

x [N —23; sn®4vK(n)(t - j3)] . (47)

As n approaches unity, K(n) approaches infinity.
In fact, we have

K =1 {5

+%{M((—‘ilm)—1}(1—nz)+"' :

(48)

Therefore, since E is finite one must require that
g approach zero. This alsorequiresthatvapproach
zero as n? approaches unity [see Eq. (24)]. Then
E=Nn?V,, which implies that all atoms are sitting
on top of the barrier.

Case C (@>0, +1<n?<+), Again from (18),
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but using this time Eq. (36), one finds

16ma31{2(1/1z)(qa/27r60)2
T

x [N - n—%— AT_/ sn24uk(}ﬁ>(t - 46 )] . (49)

Thus when 7? approaches unity from larger values
K(1/n) approaches infinity, and again q and v must
both approach zero. Hence, in this limit also all
particles sit simultaneously on the tops of the bar-
riers with no kinetic energy.

Case D (a<0, 0<xn®<1). From Eq. (40) it is
clear that sin(rx,/a) is unity when sn is unity,
but x2 is positive and approaches 0 as »? approaches
1. «x2is zero when sin®(rxy/a)=»®. Thus, the par-
ticles oscillate near the top of the barrier but do
not travel along the chain. As #? approaches unity

E,=NnfV,+

1767

the amplitude of oscillation decreases. When 72
approaches unity K((1 - #%)'/2) approaches 37 and
F(sin™(n), (1 -n?)!/2) approaches K((1 - n?)!/2);

thus, the denominator of (41) goes to zero and ¢
must approach infinity to keep v? positive. The ap-
propriate expansions for K((1 - n%)'/2) and F(sin"!(n),
(1-n)'2) are

K((1-n?)t2)=1g [1 + 2(1 _8n2> + 9(1 _8"32 I :] ,

(50)

F(sin (n), (1 -n®)!2)=%1- (1 -n?)?!/?

,_1(1 —n2>_ Q-2 e

2\ 8 24

In case D the energy is

E=Nn’V, - 16ma*n’ (ﬁ)a {K((@ = n*)"?) = F (sin”n, (1 - n®)/2)} (N— 20 n[1 = (1 =n?) sn®av{K - F}(t -jo)]"/ 2) .
i

Since ¢ approaches at most 27/a and since the two
{ } brackets both approach zero again, E approaches
Nn?Vy= NV, when »® approaches unity.

Thus for each of the various kinds of motions
considered if we treat one mode of motion only then
all of the atoms achieve the top of the barrier to-
gether. It is necessary to combine several of
such modes to make a wave packet if one is to
achieve barrier crossing in a limited region. Since
summations of elliptic functions are intricate the
resulting wave-packet theory will not be simple.

V. SUPERPOSITION

It is necessary to know the resultant displace-
ment when two or more waves are simultaneously
present in the chain. Consider to be specific the
case in which two waves g and % are present. Sup-

(52)

pose that g represents a wave traveling in the posi-
tive direction and % represents a wave traveling in
the negative direction. Then we have

x;=g(t—736)£h(t+56.) . (53)

To be more specific, assume first that both waves
are of type B (a>0, 0<n®<+1). Then we have

1/2
sinlrfu=n+sn|:-g (%) {t—é*jil, (54)
1/2
sm%‘i—'=n_sn[§(%ﬁ> {t—GJ}]. (55)

But we have

sin(A + B) = sinA cosB + cosA sinB

and

a

a

1/2 e/ 172
cosB=(1—sinzB)”z={l—nfsnz[g-<%&> {t+6j}]} =dn[1r (2—VQ> {t+6,7'}],

where dn®(x)=1 - #®sn®(u) is an elliptic function and where we have used both trigonometric and elliptic iden-

tities. Thus, we have

a \a

a

sin%(xj++xj-)=n*sn[%(%)lla{t-6*,-}]dnl:l(z_l_{q)uz{“é-j}] +n-dn[1(2—vﬂ)m{t—o*j}] sn[%(%)m{m.j}] :

a,

(56)

In order to decide whether particles go over the barrier in this case one needs to know the velocity of a

particle when it is atop a barrier.

Consider the j=0 particle.

From (8) we have
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%;=(2Vy/ @) 2 [n? - sin’(nx; /a) /2 .
Thus, we have
L. [fop\i/2 1/2 1/2 1/2
Ko+ + Xo- =(a—n> n,cn [%(%) t] + (Za—VQ> n.cn E (%KQ> t] . (57)

From (56) we have

We want (%, + %) >0 when (xy, + %) =%. This can
be achieved. Consider the motion of the j=0 par-
ticle. Figure 1 shows the two waves with the cor-
rect arrangement at about the critical moment.
The j=0 particle still has some forward velocity.
If n,=n_, then one finds that the particle goes over
the barrier if

n,>0.524 . (59)
o

m

1/2
sinl(xo,,+xo_)=n+sn[l(2—lfﬂ> t] dn[
a a\a,

1/2 1/2 ; 1/2
—sz) t] +n. dn[1 (2&) t] sn [1(—&2 V> t] ) (58)
a_ a\a, a\a.

[

When #, differs from #_the j=0 particle goes over
the barrier if

n,+n_.>1.048 . (60)

If three type-B waves are combined the resultant
displacement is found from

sin(n/a) (x; + % + x3) = ny sn[4v, K(n,) (¢ - j6,)] dn[4v,K(n,) (£ - j5,) ] dn[4v 3K (ng) (¢ +564)]

+ 1y 80[4v,K(1,) (t — 76,)] An[4v K (ng) (£ + j65)] dn[4v, K (n, ) (t - 75,)]

+ng Sn[4l/3K(n3)(t +]63)] dn[4V1K(n1)(t —jél)] dn[4VzK(n2)(t —]52)]

= NqNaNg Sn[4V1K1(n1)(t —]'61)] Sn[4V2K(nz)(t _]‘62)] Sn[4V3K(n3)(t +j63)] . (61)

If the motion of the j=0 atom is investigated,

Fig. 2 shows the waves at about the critical mo-
ment. In this case one finds that the particle goes
over the barrier if

ny +ny+n3>1,072 . (62)

We therefore conclude that several waves which
]

|
individually could not give rise to motion over the
barrier can nevertheless combine in such a way
that particles subject to their combined action will
move over the barriers.

Consider combinations of F-type waves. The re-
sulting displacements at j=0 from two F-type
waves are given by

sin%(xl+xa)=[

2 -dn®(1)] 2 — dn(2)

where we have

) =2mv,(t+t)), (2)=2mv,(+1,) . (64)

The frequencies are given by Eq. (44). ¢ and #,
are constants and
2 1 2 2
=TT e o =1-k,

+ Inyl (65)

a___ 1 2_1 g2
k2~m, ky'=1-k; .

An examination shows that motion over the barriers
occurs if kg +%2,2>1.089 278.
Next consider the combination of a B-type and an

kysn(l) (1+(2k§—1)sn2(2)>”2 kg sn(2) (1+(2k§—1)sn2(1))”2
172 [ ’

(63)

T2-dn?@) 2\ 2-an’()

[

FIG. 1. Combination of two type-B waves to give motion
over the barrier.
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FIG. 2. Combination of three type-B waves to give
motion over the barrier.

F-type wave. The displacement at j=0 of the com-
bination is

1 2 2(o)\1/2
sin%(xﬁ Xp) =14 sn(l)( - (:Iizdnzl();;n (2))

ks sn(2)dn(1)
+—3——g—17-2-(2_dn @) . (68)

In this case one can also get motion over the bar-
rier, but the conditions necessary are not obvious.
The combination », =sin36° and k, = sin27° will suf-
fice, but both larger and smaller values of », will
not do.

The well-established combination laws for the
elliptic functions can be used to ensure a stress-
free surface at one or at both ends of a row of atoms
just as one sets up standing waves using plane
harmonic waves. However since one can count
densities of normal modes using periodic boundary
conditions we shall not give the results.

VI. QUANTIZED TREATMENT

The problem can be treated quantum mechanical-
ly as follows: If the wavelike solutions given in
Eq. (4) are inserted into the Hamiltonian of Eq.
(2) one finds

H=2_H, =Z)[ﬁ—(1 +§92->+‘3—5—4 (xhﬂ—’ﬂ)
;7 T 2m m) 2 X7

+...+%Q (1—005‘2_7;)‘“")]. (67)

The problem therefore splits into single-particle
problems for which

Hj;=Ez; . (68)

The total wave function is either a product or a
determinant of the 3,’s depending on the symmetry
requirements.

If one omits 5* terms and higher powers of 6 the
Schrédinger equation obtained from (68) is
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0% 2 v, 2mx _
—3—%1 R s @ +1(y;3/m)6 ] [Ej ——2-‘1(1 - cos-—z—i)]wj =0.
(69)

The ¥; are therefore the Mathieu functions. Equa-
tion (69) can be put in more standard form by in-
troducing®

_m_Tx =2ma2 (E -3V >
=27 0 TR \Lepetm) 0O
with

s=ma?Vo/Pr*(1 + po%/m) .
One finds that

%@- +(r-2scos2z)y,; =0 . (71)

The appropriate boundary condition for a periodic
potential is that the probability of the atom being
found in each minima is equal. Thus we have

¥;(x; +a) =€ P,(x;)  or P(z+m)=e"*P(z2) .
(72)
If one adopts periodic boundary conditions
uNm=2mh ,
where 7 is an integer, we thus have
p=2n/N, (73)

i.e., u is a rational fraction.

The allowed energies E; occur in energy bands
which spread over a larger energy range the larger
the energy and the smaller the energy barrier V.

- The states at the top and bottom of each band are

periodic with period a or 2a. The energies for
such states and their wave functions are well known.
For states far below the top of the barrier one

has

2ma

Ej=2n+1)nk (W)Uz

_(2n+1 2+1 2mn2(1 +B6%/m)
32 ma®

+ O(Vo)-1/2 ,

(74)

where n=0, 1, 2, etc. We have assumed that
these states are not appreciably broadened by tun-
neling. Inserting & =ka/v and E; = 27v7, one can
solve for »? to obtain
2 2 2
2 _(2n+1)V, LB kzaz_(2n+1) +1 2n%72

2= B
bound ma m 32 ma

2 4
x (1"(_21%7)““ o(vy)y/2. (75)

For states far above the top of the barrier the
energies associated with the top and bottom of the



1770 J. S.

various bands are given by

B =l?fﬂ +1rziiz[1 +(8/m)d® i

2ma

. mat Vi
16772 (1 + 6%/ m) (n?

D +0Vs.  (76)

Substituting for E and 6 one finds

2,2 2 2 2
ZQ+1r722n +8ﬁka LoV

htree = 2 " 2md n

(77)
This last equation is not very helpful since it gives
the energies or frequencies associated with the
band edges (i.e., the tops and bottoms of the bands),
but for energies much larger than V, the bands are

KOEHLER

v

very wide.

The wave functions described have equal prob-
abilities for the jth atom to be in any valley. To
describe localized particles it would be necessary
to construct wave packets made up of Mathieu func-
tions. We will leave such treatments for a later
paper.

The treatment given depends in a very important
way on our ability to make a convergent expansion
of the displacement in terms of time derivatives.
It is not enough to say that x;,; is the same as x;
except for a phase factor. Such a procedure does
not allow the harmonic forces to be described in
terms of an effective mass. Such a procedure
generates separable but complicated equations of
motion.
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The problem of lattice dynamics of transition metals is investigated. For the case of para-
magnetic nickel, the isotropic two-band model is used to evaluate the static dielectric function

in the Hartree approximation.

The bare-ion potential is represented by a two-parameter model

potential. The phonon frequencies are calculated for the configurations (3d)°(4s)! and (34)%* (45)*°,
and compared with the experimental measurements along the three principal symmetry directions
[100], [110], and [111]. A fairly good agreement is obtained for both configurations.

I. INTRODUCTION

A good deal of work has been done on the lattice
dynamics of normal metals and we have a fairly
satisfactory understanding of phonons in these
metals.!™* The problem of lattice dynamics of
transition metals is interesting but characteris-
tically difficult. In these metals the distinction
between the core and the conduction electron is
not clear. The outermost d shell is not complete-
ly filled and the electronic-band-structure calcula-
tions® show that the wave functions of the conduc-
tion electrons have a strong d character. Thus the
d states are not sufficiently tightly bound and it is
not valid to treat them in the same way as in the
case of free atoms. Harrison® approached this
problem by generalizing the pseudopotential formu-

lation to include the d states in the transition met-
als. The pseudopotential obtained by him includes
the effects of s-d hybridization but is nevertheless
weak. The pseudopotential approach for transition
metals has not yet been utilized for developing a
theory of lattice vibrations in these metals.

Sinha” and Golibersuch® have independently studied
the electron-phonon interaction in transition met-
als using the augmented-plane-wave method. Be-
cause of the complexities of these approaches,
actual calculations for any metal have not been at-
tempted as yet.

Recently, the authors® proposed a noninteracting
band model to calculate the static dielectric func-
tion of the transition metals (hereafter we refer
to this paper as I). The free-electron approxima-
tion is used for the electrons in the s band, while



